

Mission

SRTM MISSION STATISTICS

Shuttle Radar Topography Mission Statistics Update 3/14/00

Mission Statistics: Launch: February 11, 2000, 12:44 pm EST Landing: February 22, 2000, 6:22 pm EST at Kennedy Space Center Mission Duration: 11 days, 5 hours, 38 minutes Project Start: August 1996 Project End: March 2001 Project Life Cycle: 60 months (42 months start to launch; 18 months data processing)

Data Statistics Land coverage:

Targetted land was 80% of Earth landmass (119.56 M km2, 46.16 M mi2) 99.968% targetted land mapped at least once (119.51 M km2, 46.14 M mi2) 94.59% targetted land mapped at least twice (113.10 M km2, 43.66 M mi2) 49.25% targetted land mapped at least 3 times (58.59 M km2, 22.73 M mi2) 24.10% targetted land mapped at least 4 times (28.81 M km2, 11.12 M mi2)

Land area missed: 50,000 km2 (all in US)

Data Takes:	765 total
	399 C-band only
	1 X-band only
	365 C and X-band simultaneous
	674 data takes over land
	61 Built In Test Equipment (BITE) data takes
	28 'short' ocean calibration data takes
	2 'long' ocean calibration data takes

0

Data Tapes:330 total high-density tapes used
208 tapes with C-band data, plus one double-recorded (pilot) tape
122 tapes with X-band data, plus one double-recorded (pilot) tape
(C-band tapes each recorded ~ 30 min. of data at 180 Mbits/sec, X-band tapes
recorded 60 min. of data at 90 Mbits/sec, and were on average 73% utilized)

Data Acquisition:222.4 hours total duration of mapping phase
99.2 hours C-band operation
90.6 hours X-band operation
8.6 Terabytes C-band data (=14,317 CDs)
3.7 Terabytes X-band data (=6101 CDs)
12.3 Terabytes total data (=20,418 CDs)
(Approx. equal to Library of Congress)

Data Played Back 104 C-band playbacks During Flight 49 X-band playbacks Energy used: 902.8 kWh (911 kWh planned)

Payload Weight: approximately 13,600 kg (approximately 29,000 lbs or 14.5 tons)

Mission Costs: \$133M Mission Development Costs without Launch Delay \$8.2M Launch Delay Costs \$142M Total Mission Cost \$50M Launch Costs \$40M X-SAR Costs

Mission Objective:

To use C-band and X-band interferometric synthetic aperture radars (IFSARs) to acquire topographic data over 80% of Earth's land mass (between 60degN and 56degS) during an 11-day Shuttle mission. Produce digital topographic map products which meet Interferometric Terrain Height Data (ITHD)-2 specifications (30 m x 30 m spatial sampling with <=16 m absolute vertical height accuracy, <= 10 m relative vertical height accuracy and <=20 m absolute horizontal circular accuracy). All accuracies are quoted at the 90% level, consistent with National Map Accuracy Standards.

Mission Firsts:

. . .

. .

- Fixed baseline single-pass spaceborne interferometric SAR
- Dual frequency (C-band and X-band) interferometric SAR
- Largest rigid structure flown in space

Mast Information:			
Mast Length	60 m	200 feet	
Nominal Mast Diameter	1.12 m	44.12 in	
Nominal Bay Width at Longerons	79.25 cm	31.20 in	
Nominal Bay Length	69.75 cm	27.46 in	
Number of Bays	87		
Canister Diameter (at largest ring)	1.36 m	53.5 in	
Stack Height/Bay	1.59 cm	0.63 in	
Canister Length	2.92 m	115 in	
Mast Mass	290 kg	640 lb	
Canister Mass	695 kg	1530 lb	
Mast Material:	longeron material is carbon fiber reinforced plastic (CFRP);		
	Diagonal materials include stainless steel and alpha titanium.		
	Ball joints are made from hardened st	from hardened stainless steel.	
Mast Construction:	AEC-Able Engineering Company, Inc.	(ABLE), Goleta, California	

Mission Sponsors:

- National Geospatial-Intelligence Agency (NGA)
- National Aeronautics and Space Administration (NASA)
- German Aerospace Center (DLR, Deutsches Zentrum fur Luft- und Raumfart)
- Italian Space Agency (ASI, Agenzia Spaziale Italiana)

Project Management:

• Jet Propulsion Laboratory

Data Product Applications:

- Scientific applications:
 - Geology, geophysics, earthquake research, volcan
 - monitoring
 - Hydrologic modeling
 - Co-registration of remotely acquired image data
- Civilian applications:
 - Enhanced Ground Proximity Warning Systems for aircraft
 - Civil engineering, land use planning
 - Line of sight determination for communications (e.g. cell phones)
- Military applications:
 - Flight simulators
 - Logistical planning, trafficability
 - Missile and weapons guidance systems
 - Battlefield management, tactics

Implementation

- Modifying and adding to SIR-C/X-SAR instruments flown successfully as Space Radar Laboratory Missions (SRL-1, April 1994; SRL-2 October 1994)
- Partnership: Major new components provided by industry.

Mission Manifest:

- STS-99 Shuttle Endeavour
- SRTM was a single payload mission
- Shuttle travelled tail forward at 7.5 km/sec (17,000 mph)
- Attitude was rolled 59 deg from the bay-down orientation, placing the mast at 45 deg from vertical
- Nominal altitude: 233 km (approximately126 nautical miles, 145 statute miles) with orbital adjustment once per day
- 150 data acquisition orbits plus activation, on-orbit checkout and de-activation
- 6-member crew to activate payload, deploy and stow mast, align inboard and outboard antennas, monitor payload flight systems, operate on-board computers & recorders, & handle contingencies

STS-99 Crew Commander: Kevin Kregel

Pilot: Dom Gorie

Mission Specialists: Janet Kavandi, Janice Voss, Mamoru Mohri (NASDA), Gerhard Thiele (ESA)

Significant Contractors:

- AEC-ABLE Engineering, Goleta, CA (deployable mast & canister)
- America Technology Consortium, Camarillo, CA, (motors and actuators)
- Ball Telecommunication Products Division, Boulder, CO(outboard antenna)
- Daimler-Benz Aerospace (Dornier Satellite Systems), Friedrischafen, Germany (X-band radar system)
- Composite Optics Inc., San Diego, CA (composite outboard structure)
- ENERTEC, France (onboard high rate recorders)
- Lockheed Martin, Palo Alto, CA (star tracker)
- Mission Space, La Canada, CA (command & telemetry systems)
- JDS Uniphase Corporation, Chalfont, PA (calibration optical link)

This website was designed by Eric Ramirez Site Last Updated: 25 Sep 2022

